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1. INTRODUCTION AND PRELIMINARIES 

evine [6] introduced generalized closed sets in topology as a 

generalization of closed sets.   This concept was found to be 
useful and many results in general topology were improved. Many 

researchers like Arya et al [2], Balachandran et al [3],  Bhattarcharya 
et al [4], Arockiarani et al [1], Gnanambal [5] Malghan [7], Nagaveni 

[8] and Palaniappan et al [9] have worked on generalized closed sets.  
In this paper, the notion of sg-interior is defined and some of its basic 

properties are investigated.             Also we introduce the idea of sg-
closure in topological spaces using the notions of sg-closed sets and 

obtain some related results. 

Throughout the paper, X and Y denote the topological spaces 

,X  and ,Y  respectively and on which no separation axioms 

are assumed unless otherwise explicitly stated. 

Definition 1.1 A subset A of a space X is called   

1) A preopen set   if A int(cl(A)) and a preclosed if cl(int(A))  

A 

2) A regular open set if A = int(cl(A)) and regular closed set if A = 
cl(int(A)) 

3) A semi open set if A cl(int(A)) and semi closed set if int(cl(A))  

A 

The intersection of all preclosed subsets of X containing A 

is called          pre-closure of    A and is denoted by pcl(A) 

Definition1.2:  A subset A of a space X is called  

1) g-closed set[6] if if cl(A) U whenever A U and U is  open in 

X 

2)  semi generalized closed set [4] if  scl(A) U whenever A U 

and U is semi open in X. 

3)  generalized preclosed set [ 7] if  clint(A) U whenever A U 

and U is open in X. 

 

 

 

 

 

The complements of the above mentioned closed sets are their 

respective open sets. 

Defintion 1.3: Let X be a topological space and let x X.  A subset 

N of X is said to be sg-neighbourhood of x if there exists a     sg-open 
set G such that x G N. 

 

2. SG–CLOSURE AND INTERIOR IN TOPOLOGICAL SPACE. 

Definition 2.1:  Let A be a subset of X.  A point Ax  is said to be 

sg-interior point of A is A is a sg-neighbourhood of x.  The set of all 
sg-interior points of A is called the  sg-interior of A and is denoted by 

sg-int(A). 

Theorem 2.1: If A be a subset of X.  Then sg-int(A) = { G : G is a 

sg-open, G A}. 

Proof:  Let A be a subset of X. 

x sg-int(A) x is a sg-interior point of A. 

                    A is a sg-nbhd of point x. 

                      there exists sg-open set G such that .AGx  

                     x {G:G is a sg-open, G A}  

Hence sg-int(A) = {G : G is a sg-open,   G A}. 

 

Theorem 2.2:  Let A and B be subsets of X.  Then 

(i) sg-int(X) = X and  sg-int( ) =  

(ii) sg-int(A) A. 

(iii) If B is any sg-open set contained in A, then B sg - int(A). 

(iv) If A B, then sg-int(A) sg-int(B). 

(v) sg-int(sg-int(A)) = sg-int(A). 

 

L 



International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012                                                                                         2 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org  

Proof:  (i) Since X and  are sg open sets,  

by Theorem   

sg-int(X) =  { G : G is a sg-open, G X} 

               =  X setsopensgall  = X.   

    (ie) int(X) = X. Since is the only    sg- open set contained in , 

sg-int( ) =  

(ii) Let x sg-int(A)   x is a interior point of A. 

                                     A is a nbhd of x. 

                                     Ax . 

      Thus, )int(Asgx Ax .            

      Hence sg-int(A) A. 

(iii) Let B be any sg-open sets such that B A.  Let .Bx
   

Since 

B is a sg-open set        contained in A.  x is a sg-interior point of A.   

(ie) x sg-int(A).   

       Hence B  sg-int(A). 

(iv)  Let A and B be subsets of X such that A  B.  Let x sg-

int(A).  Then x is a        sg-interior point of A and so A is a  sg-nbhd 

of x.  Since B A, B is also sg-nbhd of x. x sg-int(B).  Thus 

we have shown that x sg-int(A) x sg-int(B). 

 

Theorem 2.3:  If a subset A of space X is sg-open, then sg-int(A) 

=A. 

Proof:  Let A be sg-open subset of X.       We know that sg-int(A) 
 A.  Also, A is sg-open set contained in A.  From Theorem                  

(iii)    A  sg-int(A).   Hence sg-int(A) = A. 
The converse of the above theorem need not be true, as seen from the 

following example. 
 

Example 2.1: Let X = {a,b,c} with topology               

={X, , {b},{c},{a,b},{b,c}}.  Then                      sg-O(X) = {X,

,{a},{b},{c},{a,b},{b,c}}.   sg-int({a,c}) ={a} {c} { } = 

{a,c}.  But {a,c} is not sg-open set in X. 

 
Theorem 2.4:  If A and B are subsets of X, then sg-int(A) sg-

int(B) sg-int(A B). 
 

Proof. We know that A A B and B A B.   
We have Theorem 2.2  

(iv) sg-int(A) sg-int(A B),  
sg-int(B) sg-int(A B).    

This implies that                           

sg-int(A) sg-int(B)  sg-int(A B). 
 

Theorem 2.5: If A and B are subsets of X, then sg-int(A B) = sg-

int(A) sg-int(B). 

Proof: We know that A B A and A B  B.   We have sg-

int(A B) sg-int(A) and     sg-int(A B) sg-int(B).    
This implies that sg-int(A B) sg-int(A)  sg-int(B)                                      

-----(1)   

     Again let x sg-int(A) sg-int(B).  Then x sg-int(A) and 
x sg-int(B).  Hence  x is a sg-int point of each of sets A and B.       

It follows that A and B is sg-nbhds of x,    so that their intersection A

B is also a    sg-nbhds of x.  Hence x  sg-int(A B).  Thus            
x sg-int(A) sg-int(A) implies that   x sg-int(A B).   

Therefore sg-int(A) sg-int(B) sg-int(A B) ------(2) 

From (1)  and (2),   

We get sg-int(A B)=sg-int(A) sg-int(B). 

Theorem 2.6:  If A is a subset of X, then int(A) sg-int(A). 

Proof:  Let A be a subset of X. 

Let x int(A)  x {G : G is open,  G  A}. 

                        there exists an open set G such that x G  A. 

                        there exist a sg-open set G such that x G  A,  

as every open set is a  sg-open set in X .    

                        x {G : G is sg- open,  G  A}. 

                        x   sg-int(A). 

Thus  x int(A)   x   sg-int(A).  Hence   int(A)  sg-int(A). 

Remark.2.1:  Containment relation in the above theorem may be 

proper as seen from the following example. 

Example 2.2:  Let X ={a,b,c} with topology ={X, , 

{b},{c},{b,c}}.  Then         sg-O(X)={X,

,{b},{c},{a,b},{a,c},{b,c}}.    
Let A = {a,b}.  Now sg-int(A) = {a,b} and  int(A) = {b}.  It follows  

that        int(A) sg-int(A) and int(A) sg-int(A). 
 

Theorem 2.7: If A is a subset of X, then          g-int(A) sg-int(A),  
where g-int(A) is given by g-int(A) = {G : G is g-open,  G  A}. 

Proof: Let A be a subset of X. 

Let x int(A)   x {G : G is g-open,  G  A}. 

                        there exists a g-open set G such that  x  G  A 

                           there exists a sg-open set G such that  x  G 

 A, as every  

 g- open set is a sg-open set in X 
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                         x {G : G is sg-open,  G  A}. 

                          x sg-int(A). 

         Hence g-int(A)  sg-int(A). 

Remark 2.2:  Containment relation in the above theorem may be 

proper as seen from the following example. 
 

Example 2.3:  Let X ={a,b,c} with topology  ={X, , 

{b},{c},{a,c}}.  Then sg-o(X) = { X, , {a},{c},{a,b},{a,c},{b,c}}.  

&  g – open (X)  = { X, ,{a},{c},{a,c}}.  Let A = {b,c}, sg-int(A) 

= {b,c} & g-int(A) = {c}.  It follows g-int(A)  sg-int(A)  and   g-

int(A) sg-int(A) . 

Definition 2.2:  Let A be a subset of a space X.   We define the sg-
closure of A to be the intersection of all sg-closed sets containing A.  

In symbols, sg-cl(A) = {F : A  F  sgc(X)}. 
 

Theorem 2.8:  If A and B are subsets of a space X.   Then  

(i) sg-cl(X) = X   and  sg-cl( ) =  

(ii) A sg-cl(A). 

(iii) If B  is any sg-closed set containing A, then sg-cl(A) B. 

(iv) If A B then sg-cl(A)  sg-cl(B). 

Proof:  (i) By the definition of sg-closure,  X is the only sg-closed set 
containing X.  Therefore sg-cl(X) = Intersection of all the sg-closed 

sets containing X = {X}  =  X.   That is  sg-cl(X) = X.   By the 

definition of sg-closure, sg-cl( ) = Intersection of all the sg-clsed 

sets  containing   = { } = .  That is sg-cl( ) = . 

(ii)  By the definition of sg-closure of A,  it is obvious that A  sg-

cl(A). 

(iii) Let B be any sg-closed set containing A.  Since sg-cl(A) is the 

intersection of all sg-closed sets containing A, sg-cl(A) is contained 
in every sg-closed set containing A.  Hence in particular sg-cl(A) 

B. 

(iv)  Let A and B be subsets of X such that A B.  By the definition 

sg-cl(B) = { F: B  F sg-c(X)}.   If B F  sg-c(X), then sg-
cl(B) F.  Since A B,  A B F sg-c(X),  we have sg-cl(A) 

 F.  There fore sg-cl(A) {F : B F sg-c(X)} = sg-cl(B).  

(i.e) sg-cl(A)  sg-cl(A). 

 

Theorem 2.9:  If  A X  is  sg-closed, then    sg-cl(A) = A. 

Proof:  Let A be sg-closed subset   of X.  We know that A sg-

cl(A).  Also A A  and A is  sg-closed.  By theorem              (iii)  
sg-cl(A) A.  Hence sg-cl(A) = A. 

 
Remarks 2.3:  The converse of the above theorem need not be true 

as seen from the following example. 

 

Example 2.4: Let X ={a,b,c} with topology ={X, , 

{b},{c},{a,b},{b,c}}.  Then          sg-C(X)={X,

,{a},{c},{a,b},{b,c},{a,c}}.     sg-cl({b}) ={b}.  But {b} is not sg-

closed set in X. 

 

Theorem  2.10:   If A and B are subsets of a space X, then sg-cl(A
B) sg-cl(A) sg-cl(B). 

 
Proof: Let A and B be subsets of X. Clearly A B A  and A B

B.   
By theorem sg-cl(A B)  sg-cl(A) and       sg-cl(A B)  sg-

cl(B).  
Hence sg-cl(A B) sg-cl(A)  sg-cl(B). 

 
Theorem 2.11:  If A and B are subsets of a space X then sg-cl(A

B)= sg-cl(A) sg-cl(B). 
 

Proof: Let A and B be subsets of X.  Clearly  A A B  and B
A B.          We have      sg-cl(A) sg-cl(B) sg-cl( A B) 

----(1)  

Now to prove  

sg-cl( A B) sg-cl(A) sg- cl(B). 

Let    x sg-cl(A B) and suppose x  sg-cl(A) sg- cl(B). Then 

there exists sg-closed sets A1 and B1 with A  A1, B  B1   and x
A1 B1.  We have A B  A1  B1   and A1 B1 is sg-closed set 

by theorem   such that x A1 B1.   Thus x sg-cl(A B)  which 
is a contradiction to x sg-cl(A B).               Hence sg-cl(A B)

sg-cl(A) sg-cl(B) 

 ----(2)      

From (1) and (2),  we have   

sg-cl(A B)= sg-cl(A) sg-cl(B). 

Theorem 2.12:  For an x X, x sg-cl(A)  if and only if V A 

 for every                    sg-closed sets V containing x. 

Proof:  Let x X and x sg-cl(A).  To prove V A
 
for every 

sg-open set V containing x. Prove the result by contradiction.  

Suppose there exists a        sg-open set V containing x such that          

V A = .  Then A X-V and X-V is     sg-closed.  We have sg-

cl(A)  X - V.  This shows that x sg-cl(A), which is a 

contradiction.   

Hence V A  for every sg-open set V containing x. 

Conversly, let V A  for every sg-open set V containing x.  

To prove x sg-cl(A).   We prove the result by contradiction.  

Suppose x sg-cl(A).  Then x  X – F and   S – F is sg-open.  Also 

(X–F) A = , which is a contradiction.  

Hence x sg-cl(A). 
 

Theorem 2.13:  If A is a subset of a space X, then sg-cl(A) cl(A). 

Proof: Let A be a subset of a space S.  By the definition of closure,                         

cl(A) = {F: A F C(X)}. 
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If A F C(X)}, Then A F sg-C(X), because every closed set is 
sg-closed.      That is sg-cl(A) F. There fore sg-cl(A) {F X 

: F C(X)} = cl(A).   
Hence sg-cl(A) cl(A). 

 

Remark 2.4: Containment relation in the above theorem may be 
proper as seen from the following example. 

 

Example 2.5: Let X ={a,b,c} with topology  ={X, , 

{b},{c},{a,c}}.  Then sg-cl(X) = {X, , {a},{b},{c},{a,b},{b,c}} 

and           g – cl (X)  = { X, , {b},{a,b},{b,c}}.     Let A = {b,c}, 

sg-cl(A) = {b,c} and g-cl(A) = {b}.  It follows g-cl(A)  sg-cl(A)  

and   g-cl(A)  sg-cl(A) . 
 

Theorem 2.14 : If A is a subset of X, then sg-cl(A) g-cl(A),  

where g-cl(A) is given by g-cl(A) = {F X : A F and f is a     
g-closed set in X}. 

Proof:  Let A be a subset of X.                  By definition of g-cl(A) =
{F X : A F and f is a g-closed set in X}.   If A F and F is 

g-closed subset of x, then A F  sg-cl(X), because every g closed 
is sg-closed subset in X.  That is sg-cl(A) F.  

Therefore sg-cl(A) {F  X : A F and f is a g-closed set in 

X} = g-cl(A).  
Hence sg-cl(A) g-cl(A). 

 

Corrolory2.1: Let A be any subset of X.  Then 

(i) sg-int(A))
c
 = sg-cl(A

c
)    

(ii)  sg-int(A) = (sg-cl(A
c
)) 

(iii) sg-cl(A) = (sg-cl(A
c
)) 

 

Proof:  Let x  sg-int(A))
c
.  Then x  sg-int(A).  That is every sg-

open set U containing x is such that U A.   That is every sg-open 

set U containing x is such that U A
c

.  By theorem                        

x  sg-int(A))
c
 and there fore                    sg-int(A))

c
sg-cl(A

c
).  

Conversely,           let x  sg-cl(A
c
). 

Then by theorem, every sg-open set U containing x is such that   U

A
c
 .  That is every sg-open set U containing x is such that U 

A.   This implies by definition of sg-interior of A, x sg-int(A).  

That is    x  sg-int(A))
c 

 and sg-cl(A
c
) (

 
sg-int(A))

c
.  Thus sg-

int(A))
c
 = sg-cl(A

c
)    

(ii) Follows by taking complements in (i). 

(ii) Follows by replacing A by A
c
 in (i). 

3. PRESERVATION THEOREMS CONCERNING   G-
HAUSDORFF AND SG-HAUSDORFF SPACES 

In this section we investigate preservation theorems concerning sg- 

Hausdorff spaces. 

Defintion 3.1: A topological space x is said to be g-Hausdorff if 
whenever x and y are distinct points of X there are disjoint g-open 

sets U and V with x U and y V. 

 It is obvious that every Hausdorff space is g-Hausdorff space.  The 

following example shows that the converse is not true. 

 

Example 3.1: Let X = {a,b,c} and  ={X, , {a}}.  It is clear that 

X is not Hausdorff Space.  Since {a}, {b} and {c} are all         g-
open, it follows that H is sg-Hausdorff Space. 

 

Theorem3.1:  Let X be a topological space and Y be Hausdorff.  If f: 

X Y is injective and g-continous, then x is g-Hausdorff. 

Proof:  Let x and y be any two distinct points of X.  Then f(x) and 
f(y) are distinct points of Y, because f is injective.  Since Y is 

Hausdorff, there are disjoint open sets U and V in Y containing f(x) 

and f(y) respectively.  Since f is g-continous and U V = , we 

have f
-1
(U)  and  f

-1
(V)     are disjoint g-open sets in X such that     x

 f
-1

(U)  and  y  f
-1
(V).  Hence X is     g-Hausdorff space. 

Defintion3.2:  A topological space X is said to be sg-Hausdorff 

Space if whenever x and y are distinct points of X there are disjoint 

sg-open sets U and V with x U and y V. 

   It is obvious that every g-Hausdorff space is a sg-Hausdorff space.  

The following example shows that the converse is not true. 

Example 3.1: Let X = {a,b,c} and       ={X, , {a}}.   Since {a}, 

{b} and {c} are all sg-open, it implies that X is            sg-Hausdorff 

space. Since {a}, {b} and {c} are not g-open in X , it  follows that „a‟ 
and „c‟ can not be separated by any two disjoint g-open sets in X.  

Hence  X is not               g-Hausdorff Space. 

Theorem3.2:  Let X be a topological space Y be Hausdorff space.  If 

f: X Y is injective and sg-continuous, then X is       sg-Hausdorff 

Space. 

Proof: Let x and y be any two distinct points of X.  Then f(x) and 
f(y) are distinct points of Y, because f is injective.  Since Y is 

Hausdorff, there are disjoint open sets U and V in Y containing f(x) 

and f(y) respectively.  Since f is sg-continous and     U V= , we 

have f
-1

(U) and f
-1

(V) are disjoint sg-open sets in X such that       x

f
-1

(U) and y  f
-1

(V).  Hence X is       sg-Hausdorff space. 

 

Theorem3.3: Let X be a topological space  Y be sg-Hausdorff 

Space.  If f: X Y is injective and sg-irresolute, then X is         sg-

Hausdorff space. 

Proof: Let x and y be any two distinct points of X.  Then f(x) and 

f(y) are distinct points of Y, because f is injective.  Since Y is sg- 
Hausdorff, there are disjoint sg- open sets U and V in Y containing 

f(x) and f(y) respectively.  Since f is sg-irresolute and U V = , 

we have f
-1

(U)  and  f
-1
(V)  are disjoint sg-open sets in X such that         

x  f
-1

(U)  and  y  f
-1
(V).  Hence X is sg-Hausdorff space. 

4. CONCLUSION 

From the definitions of g-Hausdorff space and sg-Hausdorff space,     

we have result. 
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X is a Hausdorff Space   X is a  g- Hausdorff Space  X is a 

sg- Hausdorff Space. 
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