sg-Interior and sg-Closure in Topological spaces

S.Sekar and K.Mariappa

Abstract: In this paper, we introduce sg-interior, sg-closure and some of its basic properties.

Keywords: sg-open; sg-closed; sg-int(A); sg-cl(A); sg-Hausdorff space.

AMS Subject Classification: 54C10, 54C08, 54C05, 54E55.

1. INTRODUCTION AND PRELIMINARIES

Levine [6] introduced generalized closed sets in topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. Many researchers like Arya et al [2], Balachandran et al [3], Bhattarcharya et al [4], Arockiarani et al [1], Gnanambal [5] Malghan [7], Nagaveni [8] and Palaniappan et al [9] have worked on generalized closed sets. In this paper, the notion of sg-interior is defined and some of its basic properties are investigated. Also we introduce the idea of sg-closure in topological spaces using the notions of sg-closed sets and obtain some related results.

Throughout the paper, X and Y denote the topological spaces (\mathbf{X}, τ) and (\mathbf{X}, σ) respectively and on which no separation axioms are assumed unless otherwise explicitly stated.

Definition 1.1 A subset A of a space X is called

1) A **preopen** set if A \subseteq int(cl(A)) and a **preclosed** if cl(int(A)) \subseteq A

2) A regular open set if A = int(cl(A)) and regular closed set if A = cl(int(A))

3) A semi open set if $A \subseteq cl(int(A))$ and semi closed set if $int(cl(A)) \subseteq A$

The intersection of all preclosed subsets of X containing A is called pre-closure of A and is denoted by pcl(A)

Definition 1.2: A subset A of a space X is called

1) **g-closed set[6]** if if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X

2) semi generalized closed set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.

3) generalized preclosed set [7] if $clint(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 1.3: Let X be a topological space and let $x \in X$. A subset N of X is said to be sg-neighbourhood of x if there exists a sg-open set G such that $x \in G \subset N$.

2. SG-CLOSURE AND INTERIOR IN TOPOLOGICAL SPACE.

Definition 2.1: Let A be a subset of X. A point $x \in A$ is said to be sg-interior point of A is A is a sg-neighbourhood of x. The set of all sg-interior points of A is called the sg-interior of A and is denoted by sg-int(A).

Theorem 2.1: If A be a subset of X. Then sg-int(A) = $\bigcup \{ G : G \text{ is a sg-open, } G \subset A \}$.

Proof: Let A be a subset of X.

 $x \in$ sg-int(A) \Leftrightarrow x is a sg-interior point of A.

 \Leftrightarrow A is a sg-nbhd of point x.

 \Leftrightarrow there exists sg-open set G such that $x \in G \subset A$.

 $\Leftrightarrow x \in \bigcup \{G: G \text{ is a sg-open, } G \subset A\}$

Hence sg-int(A) = $\bigcup \{G : G \text{ is a sg-open}, G \subset A\}.$

Theorem 2.2: Let A and B be subsets of X. Then

(i) sg-int(X) = X and sg-int(φ) = φ

(ii) sg-int(A) \subset A.

(iii) If B is any sg-open set contained in A, then $B \subset sg - int(A)$.

(iv) If $A \subset B$, then sg-int(A) \subset sg-int(B).

(v) sg-int(sg-int(A)) = sg-int(A).

1

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 ISSN 2229-5518

Proof: (i) Since X and φ are sg open sets,

by Theorem

 $sg-int(X) = \bigcup \{ G : G \text{ is a sg-open, } G \subset X \}$

$$= X \cup dll sg open sets = X.$$

(ie) int(X) = X. Since φ is the only sg- open set contained in φ , $\operatorname{sg-int}(\varphi) = \varphi$

(ii) Let $x \in \text{sg-int}(A) \implies x \text{ is a interior point of } A$.

 $\Rightarrow x \in A$.

 \Rightarrow A is a nbhd of x.

Thus, $x \in sg - int(A) \implies x \in A$.

Hence sg-int(A) \subset A.

(iii) Let B be any sg-open sets such that $B \subset A$. Let $x \in B$. Since B is a sg-open set contained in A. x is a sg-interior point of A.

(ie) $x \in \text{sg-int}(A)$.

Hence $B \subset \text{sg-int}(A)$.

(iv) Let A and B be subsets of X such that $A \subset B$. Let $x \in sg$ sg-interior point of A and so A is a sg-nbhd as every open set is a sg-open set in X. int(A). Then x is a of x. Since $B \supset A$, B is also sg-nbhd of x. $\Longrightarrow x \in$ sg-int(B). Thus we have shown that $x \in \text{sg-int}(A) \Longrightarrow x \in \text{sg-int}(B)$.

Theorem 2.3: If a subset A of space X is sg-open, then sg-int(A) =A.

Proof: Let A be sg-open subset of X. We know that sg-int(A) \subset A. Also, A is sg-open set contained in A. From Theorem (iii) $A \subset \text{sg-int}(A)$. Hence sg-int(A) = A.

The converse of the above theorem need not be true, as seen from the following example.

Example 2.1: Let $X = \{a,b,c\}$ with topology

 $\tau = \{X, \varphi, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. Then $sg-O(X) = \{X,$ φ ,{a},{b},{c},{a,b},{b,c}}. sg-int({a,c}) ={a} \cup {c} \cup {\varphi} = $\{a,c\}$. But $\{a,c\}$ is not sg-open set in X.

Theorem 2.4: If A and B are subsets of X, then $sg-int(A) \cup sg$ $int(B) \subset sg-int(A \cup B).$

Proof. We know that $A \subset A \cup B$ and $B \subset A \cup B$. We have Theorem 2.2 (iv) sg-int(A) \subset sg-int(A \cup B), $sg-int(B) \subset sg-int(A \cup B).$ This implies that

 $\operatorname{sg-int}(A) \cup \operatorname{sg-int}(B) \subset \operatorname{sg-int}(A \cup B).$

Theorem 2.5: If A and B are subsets of X, then $sg-int(A \cap B) = sg-int(A \cap B)$ $int(A) \cap sg-int(B)$.

Proof: We know that $A \cap B \subset A$ and $A \cap B \subset B$. We have sg $int(A \cap B) \subset sg-int(A)$ and $sg-int(A \cap B) \subset sg-int(B)$. This implies that $\operatorname{sg-int}(A \cap B) \subset \operatorname{sg-int}(A) \cap \operatorname{sg-int}(B)$ -----(1)

Again let $x \in \text{sg-int}(A) \cap \text{sg-int}(B)$. Then $x \in \text{sg-int}(A)$ and $x \in sg\text{-int}(B)$. Hence x is a sg-int point of each of sets A and B. It follows that A and B is sg-nbhds of x, so that their intersection A \cap B is also a sg-nbhds of x. Hence $x \in \text{sg-int}(A \cap B)$. Thus $x \in \text{sg-int}(A) \cap \text{sg-int}(A)$ implies that $x \in \text{sg-int}(A \cap B)$.

Therefore sg-int(A) \cap sg-int(B) \subset sg-int(A \cap B) -----(2)

From (1) and (2),

We get $sg-int(A \cap B) = sg-int(A) \cap sg-int(B)$.

Theorem 2.6: If A is a subset of X, then $int(A) \subset sg-int(A)$.

Proof: Let A be a subset of X.

Let $x \in int(A) \Longrightarrow x \in \bigcup \{G : G \text{ is open, } G \subset A\}$.

 \implies there exists an open set G such that $x \in G \subset A$.

 \implies there exist a sg-open set G such that $x \in G \subset A$,

 \Rightarrow x $\in \cup \{G : G \text{ is sg- open, } G \subset A\}.$

 \Rightarrow x \in sg-int(A).

Thus $x \in int(A) \implies x \in sg-int(A)$. Hence $int(A) \subset sg-int(A)$.

Remark.2.1: Containment relation in the above theorem may be proper as seen from the following example.

Let X ={a,b,c} with topology τ ={X, φ , Example 2.2: $\{b\},\{c\},\{b,c\}\}.$ Then $sg-O(X) = \{X, \mathcal{O}\}$ $\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}.$ Let $A = \{a,b\}$. Now sg-int(A) = $\{a,b\}$ and int(A) = $\{b\}$. It follows $int(A) \subset sg-int(A)$ and $int(A) \neq sg-int(A)$. that

Theorem 2.7: If A is a subset of X, then g-int(A) \subset sg-int(A), where g-int(A) is given by g-int(A) = $\bigcup \{G : G \text{ is g-open}, G \subset A\}$. **Proof**: Let A be a subset of X.

Let $x \in int(A) \implies x \in \bigcup \{G : G \text{ is g-open, } G \subset A\}$.

 \Rightarrow there exists a g-open set G such that $x \in G \subset A$

 \Rightarrow there exists a sg-open set G such that $x \in G$

 \subset A, as every

g- open set is a sg-open set in X

IJSER © 2012 http://www.ijser.org

```
\Rightarrow x \in \cup \{G : G \text{ is sg-open, } G \subset A\}.
```

 $x \in \text{sg-int}(A)$.

Hence g-int(A) \subset sg-int(A).

Remark 2.2: Containment relation in the above theorem may be proper as seen from the following example.

Example 2.3: Let X ={a,b,c} with topology $\mathcal{T} = \{X, \varphi, \{b\}, \{c\}, \{a,c\}\}$. Then sg-o(X) = { X, φ , {a}, {c}, {a,b}, {a,c}, {b,c}}. & g - open (X) = { X, $\varphi, \{a\}, \{c\}, \{a,c\}\}$. Let A = {b,c}, sg-int(A) = {b,c} & g-int(A) = {c}. It follows g-int(A) \subset sg-int(A) and g-int(A) \neq sg-int(A).

Definition 2.2: Let A be a subset of a space X. We define the sgclosure of A to be the intersection of all sg-closed sets containing A. In symbols, sg-cl(A) = $\cap \{F : A \subset F \in sgc(X)\}$.

Theorem 2.8: If A and B are subsets of a space X. Then

(i) sg-cl(X) = X and sg-cl(φ) = φ

(ii) $A \subset \text{sg-cl}(A)$.

(iii) If B is any sg-closed set containing A, then sg-cl(A) \subset B.

(iv) If $A \subset B$ then sg-cl(A) \subset sg-cl(B).

Proof: (i) By the definition of sg-closure, X is the only sg-closed set containing X. Therefore sg-cl(X) = Intersection of all the sg-closed sets containing $X = \bigcap \{X\} = X$. That is sg-cl(X) = X. By the definition of sg-closure, sg-cl(φ) = Intersection of all the sg-closed sets containing $\varphi = \bigcap \{\varphi\} = \varphi$. That is sg-cl(φ) = φ .

(ii) By the definition of sg-closure of A, it is obvious that $A \subset \text{sg-cl}(A)$.

(iii) Let B be any sg-closed set containing A. Since sg-cl(A) is the intersection of all sg-closed sets containing A, sg-cl(A) is contained in every sg-closed set containing A. Hence in particular sg-cl(A) \subset B.

(iv) Let A and B be subsets of X such that $A \subset B$. By the definition $sg\text{-cl}(B) = \bigcap \{ F: B \subset F \in sg\text{-c}(X) \}$. If $B \subset F \in sg\text{-c}(X)$, then $sg\text{-cl}(B) \subset F$. Since $A \subset B$, $A \subset B \subset F \in sg\text{-c}(X)$, we have $sg\text{-cl}(A) \subset F$. There fore $sg\text{-cl}(A) \subset \bigcap \{F: B \subset F \in sg\text{-c}(X)\} = sg\text{-cl}(B)$.

(i.e) sg-cl(A) \subset sg-cl(A).

Theorem 2.9: If $A \subset X$ is sg-closed, then sg-cl(A) = A.

Proof: Let A be sg-closed subset of X. We know that $A \subset$ sgcl(A). Also $A \subset A$ and A is sg-closed. By theorem (iii) sg-cl(A) $\subset A$. Hence sg-cl(A) = A.

Remarks 2.3: The converse of the above theorem need not be true as seen from the following example.

Example 2.4: Let X ={a,b,c} with topology $\tau =$ {X, φ , {b},{c},{a,b},{b,c}}. Then sg-C(X)={X, φ , {a},{c},{a,b},{b,c},{a,c}}. sg-cl({b}) ={b}. But {b} is not sg-closed set in X.

Theorem 2.10: If A and B are subsets of a space X, then sg-cl(A \cap B) \subset sg-cl(A) \cap sg-cl(B).

Proof: Let A and B be subsets of X. Clearly $A \cap B \subset A$ and $A \cap B \subset B$.

By theorem sg-cl(A \cap B) \subset sg-cl(A) and sg-cl(A \cap B) \subset sg-cl(B).

Hence $sg-cl(A \cap B) \subset sg-cl(A) \cap sg-cl(B)$.

Theorem 2.11: If A and B are subsets of a space X then $sg-cl(A \cup B)=sg-cl(A) \cup sg-cl(B)$.

Proof: Let A and B be subsets of X. Clearly $A \subset A \cup B$ and $B \subset A \cup B$. We have $sg-cl(A) \cup sg-cl(B) \subset sg-cl(A \cup B)$

Now to prove $sg-cl(A \cup B) \subset sg-cl(A) \cup sg-cl(B)$.

Let $x \in \text{sg-cl}(A \cup B)$ and suppose $x \neq \text{sg-cl}(A) \cup \text{sg-cl}(B)$. Then there exists sg-closed sets A_1 and B_1 with $A \subset A_1$, $B \subset B_1$ and $x \neq A_1 \cup B_1$. We have $A \cup B \subset A_1 \cup B_1$ and $A_1 \cup B_1$ is sg-closed set by theorem such that $x \neq A_1 \cup B_1$. Thus $x \neq \text{sg-cl}(A \cup B)$ which is a contradiction to $x \in \text{sg-cl}(A \cup B)$. Hence $\text{sg-cl}(A \cup B)$ $\subset \text{sg-cl}(A) \cup \text{sg-cl}(B)$

----(2)

From (1) and (2), we have

 $sg-cl(A \cup B) = sg-cl(A) \cup sg-cl(B).$

Theorem 2.12: For an $x \in X$, $x \in \text{sg-cl}(A)$ if and only if $V \cap A \neq \varphi$ for every sg-closed sets V containing x.

Proof: Let $x \in X$ and $x \in \text{sg-cl}(A)$. To prove $V \cap A \neq \varphi$ for every sg-open set V containing x. Prove the result by contradiction. Suppose there exists a sg-open set V containing x such that $V \cap A = \varphi$. Then $A \subset X$ -V and X-V is sg-closed. We have sg-cl(A) \subset X - V. This shows that $x \neq \text{sg-cl}(A)$, which is a contradiction.

Hence $V \cap A \neq \varphi$ for every sg-open set V containing x.

Conversly, let $V \cap A \neq \varphi$ for every sg-open set V containing x. To prove $x \in \text{sg-cl}(A)$. We prove the result by contradiction. Suppose $x \neq \text{sg-cl}(A)$. Then $x \in X - F$ and S - F is sg-open. Also $(X-F) \cap A = \varphi$, which is a contradiction.

Hence $x \in sg-cl(A)$.

Theorem 2.13: If A is a subset of a space X, then sg-cl(A) \subset cl(A).

Proof: Let A be a subset of a space S. By the definition of closure, $cl(A) = \bigcap \{F: A \subset F \in C(X)\}.$

If $A \subset F \in C(X)$ }, Then $A \subset F \in \text{sg-C}(X)$, because every closed set is sg-closed. That is sg-cl(A) $\subset F$. There fore sg-cl(A) $\subset \cap \{F \subset X : F \in C(X)\} = cl(A)$. Hence sg-cl(A) $\subset cl(A)$.

Remark 2.4: Containment relation in the above theorem may be proper as seen from the following example.

Example 2.5: Let X ={a,b,c} with topology $\mathcal{T} =$ {X, φ , {b},{c},{a,c}}. Then sg-cl(X) = {X, φ , {a},{b},{c},{a,b},{b,c}} and g-cl (X) = { X, φ , {b},{a,b},{b,c}}. Let A = {b,c}, sg-cl(A) = {b,c} and g-cl(A) = {b}. It follows g-cl(A) \subset sg-cl(A) and g-cl(A) \neq sg-cl(A).

Theorem 2.14 : If A is a subset of X, then sg-cl(A) \subset g-cl(A), where g-cl(A) is given by g-cl(A) = $\cap \{F \subset X : A \subset F \text{ and } f \text{ is a g-closed set in } X\}$.

Proof: Let A be a subset of X. By definition of $g-cl(A) = \bigcap \{F \subset X : A \subset F \text{ and } f \text{ is a } g\text{-closed set in } X\}$. If $A \subset F$ and F is g-closed subset of x, then $A \subset F \in sg-cl(X)$, because every g closed is sg-closed subset in X. That is $sg-cl(A) \subset F$.

Therefore sg-cl(A) $\subset \cap \{F \subset X : A \subset F \text{ and } f \text{ is a g-closed set in } X\} = g-cl(A).$

Hence $sg-cl(A) \subset g-cl(A)$.

Corrolory2.1: Let A be any subset of X. Then

(i) $\operatorname{sg-int}(A)$ ^c = $\operatorname{sg-cl}(A^c)$

(ii) $sg-int(A) = (sg-cl(A^c))$

(iii) $sg-cl(A) = (sg-cl(A^{c}))$

Proof: Let $x \in \text{sg-int}(A)$ ^c. Then $x \notin \text{sg-int}(A)$. That is every sgopen set U containing x is such that $U \not\subset A$. That is every sgopen set U containing x is such that $U \cap A^c \neq \varphi$. By theorem $x \in \text{sg-int}(A)$ ^c and there fore sg-int(A)^c $\subseteq \text{sg-cl}(A^c)$. Conversely, let $x \in \text{sg-cl}(A^c)$.

Then by theorem, every sg-open set U containing x is such that $U \cap A^c \neq \varphi$. That is every sg-open set U containing x is such that U $\not \subset A$. This implies by definition of sg-interior of A, $x \notin \text{sg-int}(A)$. That is $x \in \text{sg-int}(A)$ ^c and $\text{sg-cl}(A^c) \subset (\text{sg-int}(A))^c$. Thus sg-int(A))^c = $\text{sg-cl}(A^c)$

(ii) Follows by taking complements in (i).

(ii) Follows by replacing A by A^c in (i).

3. PRESERVATION THEOREMS CONCERNING G-HAUSDORFF AND SG-HAUSDORFF SPACES

In this section we investigate preservation theorems concerning sg-Hausdorff spaces.

Definition 3.1: A topological space x is said to be g-Hausdorff if whenever x and y are distinct points of X there are disjoint g-open sets U and V with $x \in U$ and $y \in V$.

It is obvious that every Hausdorff space is g-Hausdorff space. The following example shows that the converse is not true.

Example 3.1: Let $X = \{a,b,c\}$ and $\tau = \{X, \varphi, \{a\}\}$. It is clear that X is not Hausdorff Space. Since $\{a\}, \{b\}$ and $\{c\}$ are all gopen, it follows that H is sg-Hausdorff Space.

Theorem3.1: Let X be a topological space and Y be Hausdorff. If f: $X \rightarrow Y$ is injective and g-continous, then x is g-Hausdorff.

Proof: Let x and y be any two distinct points of X. Then f(x) and f(y) are distinct points of Y, because f is injective. Since Y is Hausdorff, there are disjoint open sets U and V in Y containing f(x) and f(y) respectively. Since f is g-continous and $U \cap V = \varphi$, we have $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint g-open sets in X such that $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$. Hence X is g-Hausdorff space.

Definition3.2: A topological space X is said to be sg-Hausdorff Space if whenever x and y are distinct points of X there are disjoint sg-open sets U and V with $x \in U$ and $y \in V$.

It is obvious that every g-Hausdorff space is a sg-Hausdorff space. The following example shows that the converse is not true.

Example 3.1: Let $X = \{a,b,c\}$ and $\tau = \{X, \varphi, \{a\}\}$. Since $\{a\}$, $\{b\}$ and $\{c\}$ are all sg-open, it implies that X is sg-Hausdorff space. Since $\{a\}, \{b\}$ and $\{c\}$ are not g-open in X, it follows that 'a' and 'c' can not be separated by any two disjoint g-open sets in X. Hence X is not g-Hausdorff Space.

Theorem 3.2: Let X be a topological space Y be Hausdorff space. If f: $X \rightarrow Y$ is injective and sg-continuous, then X is sg-Hausdorff Space.

Proof: Let x and y be any two distinct points of X. Then f(x) and f(y) are distinct points of Y, because f is injective. Since Y is Hausdorff, there are disjoint open sets U and V in Y containing f(x) and f(y) respectively. Since f is sg-continous and $U \cap V = \varphi$, we have $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint sg-open sets in X such that $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$. Hence X is sg-Hausdorff space.

Theorem3.3: Let X be a topological space Y be sg-Hausdorff Space. If $f: X \rightarrow Y$ is injective and sg-irresolute, then X is sg-Hausdorff space.

Proof: Let x and y be any two distinct points of X. Then f(x) and f(y) are distinct points of Y, because f is injective. Since Y is sg-Hausdorff, there are disjoint sg- open sets U and V in Y containing f(x) and f(y) respectively. Since f is sg-irresolute and $U \cap V = \varphi$, we have $f^{1}(U)$ and $f^{1}(V)$ are disjoint sg-open sets in X such that $x \in f^{1}(U)$ and $y \in f^{1}(V)$. Hence X is sg-Hausdorff space.

4. CONCLUSION

From the definitions of g-Hausdorff space and sg-Hausdorff space, we have result.

IJSER © 2012 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 ISSN 2229-5518

X is a Hausdorff Space \Rightarrow X is a g- Hausdorff Space \Rightarrow X is a sg- Hausdorff Space.

REFERENCES

- I.Arockiarani, "Studies on Generalizations of Generalised Closed Sets and Maps in Topological Spaces", Ph.D Thesis, Bharathiar University, Coimbatore, (1997).
- 2. S.P. Arya and R.Gupta," On strongly Continous Mappings", Kyungpook Math., J.14 (1974), 131-143.
- K.Balachandran, P. Sundaram and H.Maki, "On Generalized Continuous Maps in Topological spaces", Mem, I ac Sci. Kochi Uni.Math., 12 (1991), 5-13.
- P.Bhattacharya and B.K.Lahiri, "Semi-genralized Closed sets in Topology", Indian J.Math., 29(1987), 376-382.
- 5. Y.Gnanambal, "On Generalized Pre-regular closed sets in Topological Spaces", Indian J. Pure Appl. Math., 28(1997), 351-360.
- N.Levine, "Generalized Closed Sets in Topology", Rend. Circ. Mat. Palermo, 19 (1970), 89-96.
- 7. S.R.Malghan, "Generalized Closed Maps" J Karnatak Uni. Sci., 27(1982), 82-88.
- 8. N.Nagaveni," Studies on Generalizations of Homeomorphisms in Topological Spaces", Ph.D., Thesis, Bharathiar University,(1999).
- N.Palaniappan and K.C.Rao, "Regular Generalized Closed sets", Kyungpook, Math.J.,33(1993), 211-219.